Design of the MISMIP+, ISOMIP+, and MISOMIP ice-sheet, ocean, and coupled ice sheet-ocean intercomparison projects

Xylar Asay-Davis¹

Stephen Cornford²
Daniel Martin³
Hilmar Gudmundsson⁴
David Holland⁵
Denise Holland⁵

- ¹ Potsdam Institute for Climate Impact Research
- ² University of Bristol
- ³ Lawrence Berkeley Laboratory
- ⁴ British Antarctic Survey
- ⁵ New York University

"Rising Coastal Seas on a Warming Earth"

- November 2014
- Organized by David and Denise Holland
- Supported by the WCRP
 Climate and Cryosphere (CliC)
 and NYU Abu Dhabi
- Intercomparisons from idealized to realistic

- Community effort toward understanding climate change in West Antarctica
- 5 year time horizon
- Coordinate with MISMIP and ISMIP6

- Third Marine Ice Sheet Model Intercomparison Project
- Bedrock topog. based on Gudmundsson et al. (2012)

MISMIP+ bedrock (bathymetry)

MISMIP+ bedrock (bathymetry)

MISMIP+ steady-state ice draft

MISMIP+ steady state

MISMIP+

The Experiment:

- Begins at steady state with no melting
- 100 years of retreat w/ strong, depth-dependent melting based on Galton-Fenzi (personal comm.)

$$m=rac{
ho_w c_w}{
ho_i L} \Gamma\Omega(T_f-T)$$

$$\Omega=0.8rac{z_{
m bot}}{500} anh\left(erac{z_{
m bot}-z_{
m base}}{200}
ight),$$
 $T=2,$
$$Tf=7.61 imes 10^{-4} z_{
m bot}-1.85.$$

100 years of re-advance without melting

ISOMIP+

- Second Ice-Shelf Ocean Model Intercomparison Project
- Uses MISMIP+ topography (from BISICLES-SSA)
- Calving: ice under 100 m thick calves

No sea-ice or atmospheric forcing

 COLD or WARM forcing: far-field restoring of temperature and salinity (as in Goldberg et al. 2012)

ISOMIP+ Configurations

- "Typical" (TYP) configuration:
 - Ask participants to use grid resolution and parameters of a "typical" run they perform
 - Results should show spread more typical of realistic model comparisons (e.g. CMIP)
- "Standard" (STD) configuration:
 - 2 km horizontal grid;
 - 20 m vertical resolution (depending on vertical coord.)
 - Parameterizations specified (horiz., vert. diffusion; melt boundary conditions, etc.)

The Four ISOMIP+ Experiments

Two experiments with fixed ice-shelf geometry

- Validation of ice-ocean boundary conditions without further complications
- Starting point for existing models that can't do moving cavities
- Expt 1: advanced geom; cold i.c.; warm forcing

The Four ISOMIP+ Experiments

Two experiments with fixed ice-shelf geometry

- Validation of ice-ocean boundary conditions without further complications
- Starting point for existing models that can't do moving cavities
- Expt 2: retreated geom; warm i.c.; cold forcing

Example results from Parallel Ocean Program 2x

The Four ISOMIP+ Experiments

Two experiments with prescribed dynamic geometry

- Demonstrate dynamics boundaries before full coupling
- Expt 3: retreating geom; warm i.c. and forcing
- Expt 4: re-advancing geom; cold i.c. and forcing

Example results from Parallel Ocean Program 2x

ISOMIP+: parameter studies

- Intended as reference experiments from which parameter studies can be performed
- Examples:
 - Tides
 - Atmospheric and/or Sea-ice Forcing
 - Modified bed topography
 - Modified mixing parameters/parameterizations
 - Modified melt parameterizations
 - Alternative model resolutions
 - Alternative calving law

ISOMIP+: parameter studies

Results from 2 examples

Example results from Parallel Ocean Program 2x

MISOMIP

- Essentially MISMIP+ coupled to ISOMIP+
- 100 years of retreat driven by WARM ocean forcing
- 100 years of re-advance with COLD ocean forcing

Example results from POPSICLES (POP2x-BISICLES)

Example results from POPSICLES (POP2x-BISICLES)

MISOMIP: parameter studies

2 examples

Example results from POPSICLES (POP2x-BISICLES)

MISOMIP: parameter studies

2 more examples

Example results from POPSICLES (POP2x-BISICLES)

MISOMIP

Melt channel appears at higher ocean vertical resolution (10 m)

MISOMIP Website and Email List

http://www.climate-cryosphere.org/activities/targeted/misomip

- Example input data and results: http://portal.nersc.gov/project/iceocean/
- To join the MISOMIP Google Group, send me a request: xylar.asay-davis@pik-potsdam.de

- New York University Abu Dhabi for hosting Workshops (a follow-up planned for fall 2015)
- Climate and Cryosphere (CliC) project of the World Climate Research Programme (WCRP)
- Funding from US Department of Energy (DOE)
 Office of Science:
 - Investigation of the Magnitudes and Probabilities of Abrupt Climate TransitionS (IMPACTS) Project
 - Predicting Ice Sheet and Climate Evolution at Extreme Scales (PISCEES)